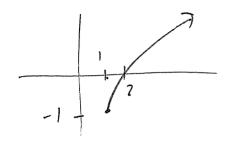
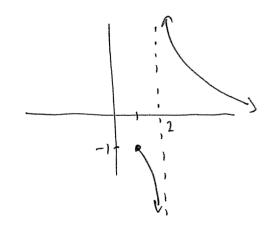


Year 12 Mathematics Specialist 3,4 Test 2 2021


Section 1 Calculator Free Sketching Rational Graphs and Vectors in 3D Introduction

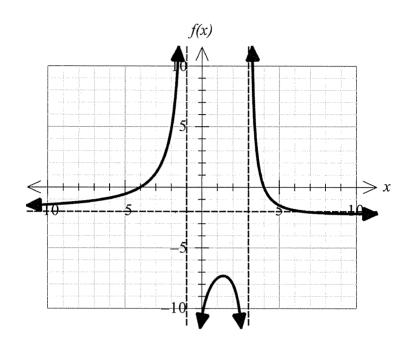
STUI	DENT'S NAMI	Solutions	MARKS : 19				
DAT	E: Monday 29	March TIME: 19 minutes					
INSTRUCTIONS: Standard Items: Pens,		Pens, pencils, drawing templates, eraser					
Questi	ons or parts of que	stions worth more than 2 marks require working to be shown to receive	full marks.				
1.	(3 marks)	(-1) (2)					
	Determine the angle between the two planes $rac{r}{\cdot} \begin{pmatrix} -1\\0\\3 \end{pmatrix} = 4$ and $rac{r}{\cdot} \begin{pmatrix} 2\\1\\2 \end{pmatrix} = 7$. You may express						
	your answer in terms of an inverse trigonometric function.						
	Angli	Schween Me wo normals					
	=> /	-1 \ /2 \	V dot produ V magnitude V inverse cos.				
		$\begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \sqrt{10} \sqrt{9} \cos \theta$	v magnitude				
			inverse www.				
	-)	$\frac{4}{3\sqrt{10}} = \omega s \theta$					
		$\theta = \omega \delta' \left(\frac{4}{3\sqrt{10}} \right)$					


2. (4 marks)

Determine the domain and range for $f(x) = \frac{1}{\sqrt{x-1}-1}$

let
$$g(x) = \sqrt{x-1} - 1$$

$$\int_{\overline{X}-1}^{1}$$



$$D: \left\{ x : x \in \mathbb{R}, x \geq 1, x \neq 2 \right\}$$

$$R: \left\{ y : y \in \mathbb{R}, y \leq -1, y \geq 0 \right\}$$

3. (6 marks)

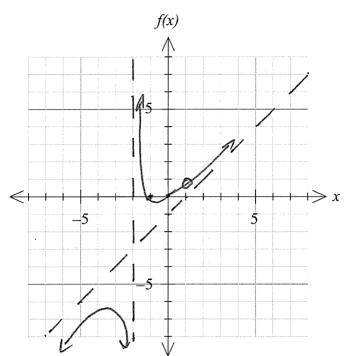
The graph of y = f(x) is show on the axes below. The defining rule is given by $f(x) = \frac{-a(x^2 - b)}{(x + c)(x - d)}$ where a, b, c and d are positive constants.

Determine the value of the constants a, b, c and d. Justify your answers.

а	b	С	d
2	16	1	3

Morrisonful evsymptote
$$y=-2$$
 $\Rightarrow \alpha=2$ varied $x-int$ is $(4,0)$ $\Rightarrow 0=-2(4^2-5)$ varied $y=-3$ $y=-3$

Vertical asymptotis at
$$x = -1$$
 and $x = 3$


$$= 3 \quad (x+1) \text{ and } (x-3) \quad \text{ Justifs}$$

$$= 3 \quad (x+1) \quad \text{ and } (x-3) \quad \text{ Varswe}$$

4. (6 marks)

Sketch the function $f(x) = \frac{x^3 - x}{(x+2)(x-1)}$, showing all intercepts, holes, poles and asymptotes.

It is not necessary to identify any stationary points.

V factorise

long dusion 1 obligue V asymptote x=-2

V intercepts a shape V Lole

$$f(x) = \frac{\chi(\chi(x))(\chi(x))}{(\chi(x))}, \chi \neq 1$$

$$= \frac{\chi^2 + \chi}{\chi + \chi}$$

$$y_{-1}\tilde{n}t = 0 = x(x+1)$$

Now

$$\begin{array}{c} x - 1 \\ x + 2 \overline{\smash)} x^2 + x + 0 \\ \underline{x^2} 2x + 0 \\ -x \\ -x - z \\ 2 \end{array}$$

$$\therefore f(x) = \frac{2}{x+2} + x-1$$

Year 12 Mathematics Specialist 3,4 Test 2 2021

Section 2 Calculator Assumed Sketching Rational Graphs and Vectors in 3D Introduction

STUDENT'S NAME							
DA	ΓΕ : Μο	nday 29 March	TIME: 31 minutes	MARKS: 31			
Special Items: Three calculators, assessment)		Pens, pencils, drav Three calculators, assessment)	ving templates, eraser notes on one side of a single A4 page (these note				
Ques	tions or p	arts of questions worth more th	an 2 marks require working to be shown to receive	/e full marks.			
5.	(3 ma	arks)					
	(a)	Describe geometrically	on $r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 5$ and a sphere has the vector what happens for different value of k .	[2]			
		For differ intersect 16	the radius of the sp it values of k it e plane, se a tung or selow the plane	will either			
	(b)	If the cross product of two vectors.	two vectors is 0, describe the geometric to vectors are paralle	relationship between the			

6. (10 marks)

A plane Π contains the three points (1,2,3), (4,5,6) and (-2,3,1)

(a) Determine a normal to the plane Π

$$dir \qquad 5 = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \qquad of \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$dir \qquad \zeta = \begin{pmatrix} -6 \\ -2 \\ -5 \end{pmatrix} \qquad \text{or} \qquad \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 6 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix}$$

(b) Determine the vector equation of the plane Π in Cartesian form

$$\int \cdot \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix} = -7$$

[3]

1 dir

/ dv

/ cross podnet

[3]

I scular egn

V reche egn

/ Cortesion egn

A line,
$$L_1$$
, has Cartesian equation $x-2=y+3=\frac{z-1}{2}$.

(c) Determine the vector equation of the line in the form $r = a + \lambda b$

- (d) Determine the equation of the plane that is perpendicular to plane Π and contains line $L_{\rm l}$ [2]

$$\Gamma = \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix}$$

/ line

I was normal for second direction

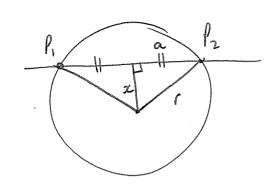
$$\Rightarrow \int \cdot \left(\frac{6}{-10} \right) = 44$$

[2]

7. (10 marks)

A sphere has equation $x^2 + y^2 + z^2 - 2x + 4z = O$ and a line has equation $r = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$

 $x^{2}-2x+y^{2}+z^{2}+4z=0 \qquad \text{corpletes squar}$ $(x-1)^{2}-1+y^{2}+(z+2)^{2}-4=0 \qquad \text{centre}$ $(x-1)^{2}+y^{2}+(z+2)^{2}=5 \qquad \text{radius}$ $\text{Vector eqn} \qquad \left| r-\binom{1}{0} \right| = \sqrt{5}$


(b) Determine the point(s) of intersection of the line and the sphere.

 $= 3 \left| \begin{pmatrix} 1+\lambda \\ 2-2\lambda \\ 3-3\lambda \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \right| = 5$ $\int \text{Subshhike}$ $\int \chi$ $\int \rho_1$ $\vdots \quad \rho_1 \Big|_{\lambda=1} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

$$P_{2}/_{\lambda} = \frac{1}{7} \begin{pmatrix} -10 \\ -15 \end{pmatrix}$$
 or $\begin{pmatrix} 2.71 \\ -1.43 \\ -2.14 \end{pmatrix}$

[3]

[4]

$$\left| \begin{array}{c} P_1 - P_2 \end{array} \right| = \left| \begin{array}{c} 2 \\ 0 \\ 0 \end{array} \right| - \left(\begin{array}{c} 2.71 \\ -1.43 \\ -2.14 \end{array} \right) \right|$$

$$= \frac{5\sqrt{14}}{7}$$

= $\frac{5\sqrt{14}}{7}$ or 2.67 $\sqrt{\text{dist } |P_1 - P_2|}$

$$a = \frac{5\sqrt{14}}{14}$$

Now by pythagoras

I halves a was

$$2x^{2} = \sqrt{x^{2} - a^{2}}$$

$$= (\sqrt{5})^{2} - \left(\frac{5\sqrt{14}}{14}\right)^{2}$$

$$2x^{2} = \frac{45}{14}$$

$$3.50$$
 or 1.79

(8 marks) 8.

Plane Π has Cartesian equation y = 8x - 4z + 9.

(a) Determine a vector normal to the plane Π .

$$8x - y - 4z = -9$$

A sphere of radius 9 is tangential to the plane Π . The point (-2,2,9) lies on the surface of the sphere. The centre of the sphere has coordinates (-9,2,k),

Determine the value of k(a)

[2]

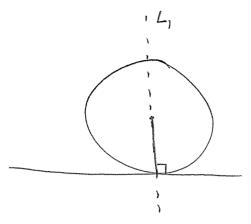
Vect egn sphere
$$\left| \int_{-\infty}^{\infty} -\left(\frac{-9}{-2} \right) \right| = 9$$

Vect egn

$$\left| \begin{pmatrix} -2 \\ 2 \\ 9 \end{pmatrix} - \begin{pmatrix} -9 \\ -z \\ k \end{pmatrix} \right| = 9$$

V substrhite

Solverg


$$k = 5, 13$$

(c) Determine the coordinates of the point of intersection of the plane Π and the sphere.

[4]

Plane
$$\int \left(\frac{8}{-1}\right) = -9$$

$$Splee \left| \int_{-\infty}^{\infty} -\left(\frac{-9}{-z} \right) \right| = 9$$

Egn for 4,

$$= \begin{pmatrix} -9 \\ -2 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 8 \\ -1 \\ -4 \end{pmatrix}$$

/ line

This line must intersect with the plane

Susshhites

Sulvery 1 = 1

$$pt$$
 is $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$

/ point

· . (voiderales (-1,-3,1)

